Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659805

RESUMO

Stress-induced condensation of mRNA and proteins into stress granules is conserved across eukaryotes, yet the function, formation mechanisms, and relation to well-studied conserved transcriptional responses remain largely unresolved. Stress-induced exposure of ribosome-free mRNA following translational shutoff is thought to cause condensation by allowing new multivalent RNA-dependent interactions, with RNA length and associated interaction capacity driving increased condensation. Here we show that, in striking contrast, virtually all mRNA species condense in response to multiple unrelated stresses in budding yeast, length plays a minor role, and instead, stress-induced transcripts are preferentially excluded from condensates, enabling their selective translation. Using both endogenous genes and reporter constructs, we show that translation initiation blockade, rather than resulting ribosome-free RNA, causes condensation. These translation initiation-inhibited condensates (TIICs) are biochemically detectable even when stress granules, defined as microscopically visible foci, are absent or blocked. TIICs occur in unstressed yeast cells, and, during stress, grow before the appearance of visible stress granules. Stress-induced transcripts are excluded from TIICs primarily due to the timing of their expression, rather than their sequence features. Together, our results reveal a simple system by which cells redirect translational activity to newly synthesized transcripts during stress, with broad implications for cellular regulation in changing conditions.

2.
Methods Mol Biol ; 2784: 45-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502477

RESUMO

The inherent stochastic processes governing gene expression give rise to heterogeneity across individual cells, highlighting the importance of single-cell studies. The emergence of single-molecule fluorescent in situ hybridization (smFISH) enabled gene expression analysis at the single-cell level while including the spatial dimension through the visualization and quantification of mRNAs in intact fixed cells. By combining smFISH with immunofluorescence (IF), a comprehensive approach takes shape facilitating the study of mRNAs and proteins to correlate gene expression profiles to different cellular states. This chapter serves as a comprehensive guide to a smFISH-IF protocol optimized for gene expression analysis in the budding yeast S. cerevisiae. We utilize smFISH to visualize the mRNA localization pattern of the CLB2 cyclin over the course of the cell cycle inferred by alpha-tubulin IF.


Assuntos
RNA , Saccharomycetales , Saccharomyces cerevisiae/genética , Hibridização in Situ Fluorescente/métodos , Saccharomycetales/genética , RNA Mensageiro/genética , RNA Mensageiro/análise , Imunofluorescência
3.
Viruses ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400039

RESUMO

SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Replicação do RNA , Hibridização in Situ Fluorescente/métodos , Espécies Reativas de Oxigênio/metabolismo , RNA Subgenômico , RNA Guia de Sistemas CRISPR-Cas , Imunofluorescência , Proteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
4.
Nat Rev Genet ; 25(4): 272-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195868

RESUMO

Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.


Assuntos
Redes Reguladoras de Genes , Imagem Individual de Molécula , Transcrição Gênica
5.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37781583

RESUMO

Fragile X messenger ribonucleoprotein (FMRP) is an RNA-binding protein implicated in autism that suppresses translation and forms granules. While FMRP function has been well-studied, how phosphorylation regulates granule binding and function remains limited. Here, we found that Fragile X patient-derived I304N mutant FMRP could not stably bind granules, underscoring the essential nature of FMRP granule association for function. Next, phosphorylation on serine 499 (S499) led to differences in puncta size, intensity, contrast, and transport as shown by phospho-deficient (S499A) and phospho-mimic (S499D) mutant FMRP granules. Additionally, S499D exchanged slowly on granules relative to S499A, suggesting that phosphorylated FMRP can attenuate translation. Furthermore, the S499A mutant enhanced translation in presynaptic boutons of the mouse hippocampus. Thus, the phospho-state of FMRP altered the structure of individual granules with changes in transport and translation to achieve spatiotemporal regulation of local protein synthesis. Teaser: The phosphorylation-state of S499 on FMRP can change FMRP granule structure and function to facilitate processive transport or local protein synthesis.

6.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577585

RESUMO

One-third of the mammalian proteome is comprised of transmembrane and secretory proteins that are synthesized on endoplasmic reticulum (ER). Here, we investigate the spatial distribution and regulation of mRNAs encoding these membrane and secretory proteins (termed "secretome" mRNAs) through live cell, single molecule tracking to directly monitor the position and translation states of secretome mRNAs on ER and their relationship to other organelles. Notably, translation of secretome mRNAs occurred preferentially near lysosomes on ER marked by the ER junction-associated protein, Lunapark. Knockdown of Lunapark reduced the extent of secretome mRNA translation without affecting translation of other mRNAs. Less secretome mRNA translation also occurred when lysosome function was perturbed by raising lysosomal pH or inhibiting lysosomal proteases. Secretome mRNA translation near lysosomes was enhanced during amino acid deprivation. Addition of the integrated stress response inhibitor, ISRIB, reversed the translation inhibition seen in Lunapark knockdown cells, implying an eIF2 dependency. Altogether, these findings uncover a novel coordination between ER and lysosomes, in which local release of amino acids and other factors from ER-associated lysosomes patterns and regulates translation of mRNAs encoding secretory and membrane proteins.

8.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131812

RESUMO

Cell motility requires strict spatiotemporal control of protein expression. During cell migration, mRNA localization and local translation in subcellular areas like the leading edge and protrusions are particularly advantageous for regulating the reorganization of the cytoskeleton. Fidgetin-Like 2 (FL2), a microtubule severing enzyme (MSE) that restricts migration and outgrowth, localizes to the leading edge of protrusions where it severs dynamic microtubules. FL2 is primarily expressed during development but in adulthood, is spatially upregulated at the leading edge minutes after injury. Here, we show mRNA localization and local translation in protrusions of polarized cells are responsible for FL2 leading edge expression after injury. The data suggests that the RNA binding protein IMP1 is involved in the translational regulation and stabilization of FL2 mRNA, in competition with the miRNA let-7. These data exemplify the role of local translation in microtubule network reorganization during migration and elucidate an unexplored MSE protein localization mechanism.

9.
Elife ; 122023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249209

RESUMO

Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an in vitro human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically,<1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions.


Assuntos
Nanotubos , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Fibroblastos , Técnicas de Cultura de Células , Comunicação Celular/fisiologia , Mamíferos
10.
Neuron ; 111(13): 2051-2064.e6, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100055

RESUMO

Activity-dependent expression of immediate early genes (IEGs) is critical for long-term synaptic remodeling and memory. It remains unknown how IEGs are maintained for memory despite rapid transcript and protein turnover. To address this conundrum, we monitored Arc, an IEG essential for memory consolidation. Using a knockin mouse where endogenous Arc alleles were fluorescently tagged, we performed real-time imaging of Arc mRNA dynamics in individual neurons in cultures and brain tissue. Unexpectedly, a single burst stimulation was sufficient to induce cycles of transcriptional reactivation in the same neuron. Subsequent transcription cycles required translation, whereby new Arc proteins engaged in autoregulatory positive feedback to reinduce transcription. The ensuing Arc mRNAs preferentially localized at sites marked by previous Arc protein, assembling a "hotspot" of translation, and consolidating "hubs" of dendritic Arc. These cycles of transcription-translation coupling sustain protein expression and provide a mechanism by which a short-lived event may support long-term memory.


Assuntos
Proteínas do Tecido Nervoso , Plasticidade Neuronal , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Citoesqueleto/genética , Encéfalo/metabolismo , Memória de Longo Prazo
11.
Front Pharmacol ; 13: 1029093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532738

RESUMO

The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle. Efforts to target coronaviruses by abrogating translation have been largely limited to repurposing existing eIF4F complex inhibitors. Here, we report the results of a high throughput screen to identify small molecules that disrupt eIF4F complex formation and inhibit coronavirus RNA and protein levels. Of 338,000 small molecules screened for inhibition of the eIF4F-driven, CAP-dependent translation, we identified SBI-1232 and two structurally related analogs, SBI-5844 and SBI-0498, that inhibit human coronavirus OC43 (HCoV-OC43; OC43) with minimal cell toxicity. Notably, gene expression changes after OC43 infection of Vero E6 or A549 cells were effectively reverted upon treatment with SBI-5844 or SBI-0498. Moreover, SBI-5844 or SBI-0498 treatment effectively impeded the eIF4F complex assembly, with concomitant inhibition of newly synthesized OC43 nucleocapsid protein and OC43 RNA and protein levels. Overall, we identify SBI-5844 and SBI-0498 as small molecules targeting the eIF4F complex that may limit coronavirus transcripts and proteins, thereby representing a basis for developing novel therapeutic modalities against coronaviruses.

12.
bioRxiv ; 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36561180

RESUMO

SARS-CoV-2 infection has caused a major global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood including the kinetics of formation of plus stranded genomic and subgenomic RNAs (gRNA and sgRNA) starting from the RNA from the first virus that enters the cell. We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA in infected cells and carried out a time course analysis to determine the kinetics of their replication. We visualized the single molecules of gRNA within the cytoplasm of infected cells 30 minutes post-infection and detected the co-expression of gRNA and sgRNA within two hours post-infection. Furthermore, we observed the formation of a replication organelle (RO) from a single RNA, which led to the formation of multiple ROs within the same cells. Single molecule analysis indicated that while gRNA resided in the center of these ROs, the sgRNAs were found to radiate and migrate out of these structures. Our results also indicated that after the initial delay, there was a rapid but asynchronous replication, and the gRNA and sgRNAs dispersed throughout the cell within 4-5 hours post-infection forming multiple ROs that filled the entire cytoplasm. These results provide insight into the kinetics of early post-entry events of SARS-CoV-2 and the formation of RO, which will help to understand the molecular events associated with viral infection and facilitate the identification of new therapeutic targets that can curb the virus at a very early stage of replication to combat COVID-19. Author Summary: SARS-CoV-2 infection continues to be a global burden. Soon after the entry, SARS-CoV-2 replicates by an elaborate process, producing genomic and subgenomic RNAs (gRNA and sgRNAs) within specialized structures called replication organelles (RO). Many questions including the timing of multiplication of gRNA and sgRNA, the generation, subcellular localization, and function of the ROs, and the mechanism of vRNA synthesis within ROs is not completely understood. Here, we have developed probes and methods to simultaneously detect the viral gRNA and a sgRNA at single cell single molecule resolution and have employed a method to scan thousands of cells to visualize the early kinetics of gRNA and sgRNA synthesis soon after the viral entry into the cell. Our results reveal that the replication is asynchronous and ROs are rapidly formed from a single RNA that enters the cell within 2 hours, which multiply to fill the entire cell cytoplasm within ~4 hours after infection. Furthermore, our studies provide a first glimpse of the gRNA and sgRNA synthesis within ROs at single molecule resolution. Our studies may facilitate the development of drugs that inhibit the virus at the earliest possible stages of replication to minimize the pathogenic impact of viral infection.

13.
Nat Methods ; 19(12): 1558-1562, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357695

RESUMO

The MS2 and MS2-coat protein (MS2-MCP) imaging system is widely used to study messenger RNA (mRNA) spatial distribution in living cells. Here, we report that the MS2-MCP system destabilizes some tagged mRNAs by activating the nonsense-mediated mRNA decay pathway. We introduce an improved version, which counteracts this effect by increasing the efficiency of translation termination of the tagged mRNAs. Improved versions were developed for both yeast and mammalian systems.


Assuntos
Proteínas do Capsídeo , Saccharomyces cerevisiae , Animais , Proteínas do Capsídeo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas , Regulação da Expressão Gênica , Estabilidade de RNA , Mamíferos/genética
14.
Nat Commun ; 13(1): 6558, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323665

RESUMO

mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.


Assuntos
Fatores de Iniciação de Peptídeos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Fatores de Iniciação de Peptídeos/genética , Capuzes de RNA/metabolismo , Iniciação Traducional da Cadeia Peptídica
16.
Proc Natl Acad Sci U S A ; 119(37): e2208465119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067310

RESUMO

Gene expression is tightly regulated by RNA-binding proteins (RBPs) to facilitate cell survival, differentiation, and migration. Previous reports have shown the importance of the Insulin-like Growth Factor II mRNA-Binding Protein (IGF2BP1/IMP1/ZBP1) in regulating RNA fate, including localization, transport, and translation. Here, we generated and characterized a knockout mouse to study RBP regulation. We report that IGF2BP1 is essential for proper brain development and neonatal survival. Specifically, these mice display disorganization in the developing neocortex, and further investigation revealed a loss of cortical marginal cell density at E17.5. We also investigated migratory cell populations in the IGF2BP1[Formula: see text] mice, using BrdU labeling, and detected fewer mitotically active cells in the cortical plate. Since RNA localization is important for cellular migration and directionality, we investigated the regulation of ß-actin messenger RNA (mRNA), a well-characterized target with established roles in cell motility and development. To aid in our understanding of RBP and target mRNA regulation, we generated mice with endogenously labeled ß-actin mRNA (IGF2BP1[Formula: see text]; ß-actin-MS2[Formula: see text]). Using endogenously labeled ß-actin transcripts, we report IGF2BP1[Formula: see text] neurons have increased transcription rates and total ß-actin protein content. In addition, we found decreased transport and anchoring in knockout neurons. Overall, we present an important model for understanding RBP regulation of target mRNA.


Assuntos
Actinas , Encéfalo , Proteínas de Ligação a RNA , Actinas/genética , Actinas/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Movimento Celular/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(38): e2123373119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095210

RESUMO

The ability of neurons to process and store salient environmental features underlies information processing in the brain. Long-term information storage requires synaptic plasticity and regulation of gene expression. While distinct patterns of activity have been linked to synaptic plasticity, their impact on immediate early gene (IEG) expression remains poorly understood. The activity regulated cytoskeleton associated (Arc) gene has received wide attention as an IEG critical for long-term synaptic plasticity and memory. Yet, to date, the transcriptional dynamics of Arc in response to compartment and input-specific activity is unclear. By developing a knock-in mouse to fluorescently tag Arc alleles, we studied real-time transcription dynamics after stimulation of dentate granule cells (GCs) in acute hippocampal slices. To our surprise, we found that Arc transcription displayed distinct temporal kinetics depending on the activation of excitatory inputs that convey functionally distinct information, i.e., medial and lateral perforant paths (MPP and LPP, respectively). Moreover, the transcriptional dynamics of Arc after synaptic stimulation was similar to direct activation of GCs, although the contribution of ionotropic glutamate receptors, L-type voltage-gated calcium channel, and the endoplasmic reticulum (ER) differed. Specifically, we observed an ER-mediated synapse-to-nucleus signal that supported elevations in nuclear calcium and, thereby, rapid induction of Arc transcription following MPP stimulation. By delving into the complex excitation-transcription coupling for Arc, our findings highlight how different synaptic inputs may encode information by modulating transcription dynamics of an IEG linked to learning and memory.


Assuntos
Proteínas do Citoesqueleto , Genes Precoces , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Transcrição Gênica , Animais , Proteínas do Citoesqueleto/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Sinapses/metabolismo
18.
Neural Dev ; 17(1): 8, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002881

RESUMO

Molecular profiles of neurons influence neural development and function but bridging the gap between genes, circuits, and behavior has been very difficult. Here we used single cell RNAseq to generate a complete gene expression atlas of the Drosophila larval central nervous system composed of 131,077 single cells across three developmental stages (1 h, 24 h and 48 h after hatching). We identify 67 distinct cell clusters based on the patterns of gene expression. These include 31 functional mature larval neuron clusters, 1 ring gland cluster, 8 glial clusters, 6 neural precursor clusters, and 13 developing immature adult neuron clusters. Some clusters are present across all stages of larval development, while others are stage specific (such as developing adult neurons). We identify genes that are differentially expressed in each cluster, as well as genes that are differentially expressed at distinct stages of larval life. These differentially expressed genes provide promising candidates for regulating the function of specific neuronal and glial types in the larval nervous system, or the specification and differentiation of adult neurons. The cell transcriptome Atlas of the Drosophila larval nervous system is a valuable resource for developmental biology and systems neuroscience and provides a basis for elucidating how genes regulate neural development and function.


Assuntos
Drosophila , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Larva , Neuroglia , Neurônios
19.
Cell Rep ; 39(10): 110853, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675768

RESUMO

Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 transcription. We identify CPEB3, a protein implicated in memory consolidation, as an upstream effector critical to GluA2 mRNA expression in FXS. Increased GluA2 mRNA is translated into an increase in GluA2 subunits, a switch in synaptic AMPAR phenotype from GluA2-lacking, Ca2+-permeable to GluA2-containing, Ca2+-impermeable, reduced inhibitory synaptic transmission, and loss of NMDAR-independent LTP at glutamatergic synapses onto CA1 inhibitory interneurons. These factors could contribute to an excitatory/inhibitory imbalance-a common theme in FXS and other autism spectrum disorders.


Assuntos
Síndrome do Cromossomo X Frágil , Proteínas de Ligação a RNA , Receptores de AMPA , Animais , Modelos Animais de Doenças , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
20.
Neuron ; 110(16): 2588-2606.e6, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35728596

RESUMO

Learning and memory rely on long-lasting, synapse-specific modifications. Although postsynaptic forms of plasticity typically require local protein synthesis, whether and how local protein synthesis contributes to presynaptic changes remain unclear. Here, we examined the mouse hippocampal mossy fiber (MF)-CA3 synapse, which expresses both structural and functional presynaptic plasticity and contains presynaptic fragile X messenger ribonucleoprotein (FMRP), an RNA-binding protein involved in postsynaptic protein-synthesis-dependent plasticity. We report that MF boutons contain ribosomes and synthesize protein locally. The long-term potentiation of MF-CA3 synaptic transmission (MF-LTP) was associated with the translation-dependent enlargement of MF boutons. Remarkably, increasing in vitro or in vivo MF activity enhanced the protein synthesis in MFs. Moreover, the deletion of presynaptic FMRP blocked structural and functional MF-LTP, suggesting that FMRP is a critical regulator of presynaptic MF plasticity. Thus, presynaptic FMRP and protein synthesis dynamically control presynaptic structure and function in the mature mammalian brain.


Assuntos
Fibras Musgosas Hipocampais , Terminações Pré-Sinápticas , Animais , Proteína do X Frágil de Retardo Mental , Potenciação de Longa Duração , Mamíferos , Camundongos , Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal , Terminações Pré-Sinápticas/metabolismo , Ribonucleoproteínas , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...